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By Walter I l l g  and A r t h u r  J. McEvily, Jr. 

S W Y  

A s e r i e s  of fatigue-crack propagation t e s t s  of two aluminum-alloy 
sheet  specimens has been conducted under completely reversed loading a t  
various s t r e s s  l eve l s  up t o  30 k s i .  Differences between e f f e c t s  of the 
compression and tension p a r t s  of the cycles are discussed. Semiempirical 
equations are developed which permit calculat ion of crack growth. Results 
are compared with those from s i m i l a r  t e s t s  made a t  a minimum stress of 
1 k s i .  I n  both types of loading, the governing parameter w a s  found t o  be 
r e l a t e d  t o  the l o c a l  s t r e s s  a t  the crack t i p .  

INTRODUCTION 

Knowledge of the s ign i f i can t  parameters a f f ec t ing  the rate of prop- 
agation of f a t igue  cracks i s  useful  i n  the  appl icat ion of f a i l - s a fe  
design. A previous paper, reference 1, presented the r e s u l t s  of fa t igue-  
crack propagation tests performed on sheet  specimens of 2024-T3 and 
7075-T6 aluminum a l loys .  
tension loading with a minimum s t r e s s  of 1 k s i  and a maximum stress 
which var ied from t e s t  t o  t e s t  from 3 t o  50 k s i .  It w a s  found i n  r e f -  
erence 1 that the crack propagation rates depended e x p l i c i t l y  on the  
product of stress-concentration factor  and ne t  stress and were influenced 
by specimen width only insofar  as it entered i n t o  the determination of 
t h a t  product. Semiempirical expressions, based on a s t ress-concentrat ion 
f a c t o r  a t  the t i p  of the crack, were developed which compared favorably 
with experimental r e s u l t s .  

These specimens were subjected t o  repeated 

The purpose of the present  paper is  t o  extend t h i s  work t o  completely 
reversed loading. The evaluation presented i n  reference 1 indicated t h a t  
the r a t e  of crack propagation was dependent so l e ly  upon the product of 
the s t ress-concentrat ion f a c t o r  and n e t  s t r e s s  i r respec t ive  of specimen 
width; therefore ,  subsequent invest igat ions need employ but  one convenient 
width of specimen r a the r  than several widths. Accordingly, f i v e  specimens 
of 2024-T3 aluminm a l loy  and three specimens of 7075-T6 aluminum a l loy ,  
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12 inches wide, were tested to determine the rate of fatigue-crack propa- 
gation under maximum net stresses varying from test to test from 6 to 
30 ksi. Separate specimens .of each material were tested in order to find 
the fatigue limit of a specimen containing a fatigue crack, and other 
specimens were used to determine material properties. 

- 

The results of the present tests are compared with those from 
reference 1 which involved only tension loading. The relative impor- 
tance in fatigue-crack propagation of tension and compression are 
di s c us sed. 

SYMBOLS 

A l , A 2 , A j ,  constants in fatigue-crack-rate expression 

a 

e 
C 

KE 

KH 

KN 

KT 

N 

R 

r 

Sf 

‘net 

SO 

one-half of major axis of ellipse, in. 

constant of integration, cycles 

half-width of sheet, in. 

theoretical stress-concentration factor for ellipse 

theoretical stress-concentration factor for circular hole 

theoretical stress-concentration factor modified for size 
effect 

theoretical stress-concentration factor 

number of cycles 

ratio of minimum stress to maximum stress 

rate of fatigue -crack propagation, in. /cycle 

fatigue limit (or stress at 108 cycles), ksi 

maximum load divided by remaining net sectional area, ksi 

maximum load divided by initial net sectional area, ksi 

L 
3 
2 
8 



X 

U 

P 

P '  

Pe 

one-half of t o t a l  length of cen t r a l  symmetrical crack, i n .  

stress-dependent proport ional i ty  constant, i n .  -1/2/cycle 

radius of curvature, i n .  

Neuber material constant, i n .  

e f fec t ive  radius of curvature a t  t i p  of fa t igue  crack, i n .  

SPECI3ENS AND TESTS 

All specimens used i n  t h i s  investigation f o r  the study of fa t igue-  
crack propagation rate were cut from a s ingle  sheet o.f each of the 
aluminum a l loys  2024-T3 and 7075-T6 of 0.081-inch nominal thickness. 
Figure 1 shows the specimen configuration. 
wide and contained a 1/16-inch-diameter hole a t  the midpoint which w a s  
notched on each side t o  a depth of 1/32 inch. 
the notch w a s  0.005 inch and t h i s  configuration had a theo re t i ca l  stress- 
concentration f ac to r  of 7.9.  The notch-cutting procedure i s  described 
i n  reference 1. 

The specimens were 12 inches 

The radius  a t  the root  of 

The surface of the specimen w a s  polished as described i n  reference 1 
and f i n e  longi tudinal  l i nes  were scribed with a razor  blade t o  f a c i l i t a t e  
measurement of crack growth. Since the present  tes ts  were run under com- 
p l e t e ly  reversed loading, two guide plates were used t o  prevent buckling 

by 5-inch cutout i n  compression. One of the guide plates  contained a - - 
t o  allow v isua l  observation of the region of the crack. 

L 
2 

The tests i n  which the maximum s t resses  were grea te r  than 10 k s i  were 
performed i n  a fl20,OOO-pound-capacity hydraulic jack which cycled auto- 
mat ical ly  a t  speeds of approximately 9 t o  13 cpm (ref.  2 ) .  One of these 
t e s t s  w a s  duplicated a t  1,200 cpm i n  a f100,OCO-pound-capacity hydraulic 
fa t igue  machine t o  check speed ef fec t .  All other  t e s t s  were performed i n  
subresonant-type fat igue machines which operated a t  1,800 cpm and had a 
capacity of +,20,000 pounds (ref. 3 ) .  

The specimens were i l luminated with a stroboscopic l i g h t  and crack 
progress w a s  observed continuously through a 30-power microscope. The 
numbers of cycles required t o  i n i t i a t e  a crack and t o  cause the crack t o  
reach each scribed l i n e  were recorded. 

The maximum and minimum loads remained constant throughout each 
tes t ,  and the t e s t s  were conducted up t o  values of So of 30 k s i  with 
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one specimen tested a t  each of severa l  l eve l s .  The t e s t s  were termi- 
nated when the r a t e  of crack propagation became too rapid f o r  accurate 
observation o r  when the cracks grew beyond the  cutout region provided 
f o r  visual  observation. 

Two spec ia l  types of t e s t s  were performed f o r  each mater ia l  on 2- 
inch-wide specimens i n  order t o  determine the  s t r e s s  a t  which a f a t igue  
crack w i l l  not propagate under completely reversed loading (R = -1). 
one type of t e s t ,  the crack w a s  i n i t i a t e d  i n  a 0.005-inch-radius notch 
(KT = 7.4) a t  
1/2 inch a t  7 k s i .  The s t r e s s  w a s  progressively reduced u n t i l  a l e v e l  

other  type of t e s t ,  the crack w a s  i n i t i a t e d  i n  a 0.001-inch-radius notch 
(KT = 1 6 )  a t  a value of The la t te r  type of t e s t  w a s  

made t o  determine whether the cracks would propagate, and no data on the 
r a t e  of propagation were obtained. 

In 

So = 10 k s i  and w a s  propagated t o  a t o t a l  length of 
L 
3 
2 
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w a s  found a t  which the crack d id  not propagate i n  lo8 cycles.  I n  the 

KNSnet of 26 k s i .  

I n  addition, standard t e n s i l e  t e s t s  were performed t o  determine the 
0.2-percent-offset y i e ld  s t r e s s ,  the ult imate s t rength,  the t o t a l  elonga- 
t i on ,  and the Young's modulus f o r  each of the  two mater ia l s .  

FESULTS AND DISCUSSION 

Mechanical Propert ies  

The mechanical propert ies  of the two aluminum a l loys  as determined 
from the average of four standard t e n s i l e  tests f o r  each material a r e  as 
follows : 

Yield s t r e s s  (0.2-percent o f f s e t ) ,  k s i  . . . .  53.1. 74.5 
Ultimate s t rength,  k s i  . . . . . . . . . . . .  71.2 81.1 

. . . . . . . . . . . . . . . . . .  12.6 percent 19.3 
Young's modulus, k s i  . . . . . . . . . . . . .  11.00 X lo3 10.61 X 103 

Total  elongation (2-inch gage length) ,  

Fatigue-Crack Propagation 

The fatigue-crack propagation r e s u l t s  a r e  summarized i n  tab le  I 
which gives the number of cycles required t o  extend a crack from an 
i n i t i a l  t o t a l  length of 0.2 inch t o  spec i f ied  lengths.  These crack 
lengths are p lo t t ed  i n  f igu re  2 aga ins t  number of cycies .  The r a t e  o 
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crack propagation w a s  
curves i n  f igu re  2 a t  
propagation have been 

obtained graphically by measuring the slopes of the 
various crack lengths. The rates of fatigue-crack 
p lo t t ed  i n  figure 3 against  the parameter KNSnet, 

which w a s  shown i n  reference 1 t o  be the parameter governing the rate of 
fztigue-crack propagation. The stress-concentration f a c t o r  KN w a s  com- 
Duted by the method out l ined i n  the appendix. The values of p '  neces- 
sary f o r  these computations were taken from reference 1 and a r e  0.003 inch 
f o r  202bT3 aluminum a l loy  and 0.002 inch f o r  7075-T6 aluminum a l loy .  

Examination of f igure  3 reveals  that the fatigue-crack propagation 
r a t e s  f o r  each material a re  essent ia l ly  single-valued functions of t he  
parameter KNSnet. For purposes of comparison the previously published 
curve ( r e f .  1) f o r  R 0 i s  also shown i n  t h i s  f igure .  It i s  apparent 
t h a t  over the  lower range f o r  the 202bT3 specimen and over the e n t i r e  
range f o r  the 7075-T6 specimen, the r a t e  of ' fatigue-crack propagation a t  
R = -1 i s  e s sen t i a l ly  the same as at R = 0. 

This result can be explained i n  the following manner. I n  the  region 
where the  rates f o r  R = -1 and R = 0 a r e  about the same, the compres- 
s ion p a r t  of the R = -1 cycle m u s t  have l i t t l e  e f f e c t  on the rate of 
crack propagation. This would be the case i f  the crack surfaces were 
brought i n t o  contact during the compression p a r t  of the cycle so that 
the e f f ec t ive  ne t  sec t iona l  area would be increased and the stress con- 
cent ra t ion  a t  the t i p  of the crack w o u l d  be eliminated. The primary 
source of damage i n  such a case is t h e  tension p a r t  of the cycle .  How- 
ever, f o r  values of KNSnet i n  excess of 100 k s i ,  the  rate of fa t igue-  
crack propagation i s  higher a t  R = -1 than a t  R = 0 f o r  2024-T3 
aluminum a l loy .  The compression p a r t  of the cycle must have an effect  
i n  t h i s  material, and i n  l i n e  with the preceding explanation the com- 
pressive cycle should have an e f f e c t  only i f  the  crack d id  not  c lose 
completely. 
KNSnet 
would be subjected t o  la rge  p l a s t i c  deformation during the tension p a r t  
of the  cycle because of the  r e l a t ive ly  low y ie ld  s t rength  of 2024-T3 
aluminum a l loy .  Then the crack surfaces could not be r ead i ly  closed up 
i n  the following compression p a r t  of the  cycle.  I n  such a case, the  
e f f ec t ive  ne t  sec t iona l  area would not be increased and the stress- 
concentration e f f e c t  would remain. Thus the material a t  the  t i p  of the 
crack would be subjected t o  a more d ra s t i c  stress h i s to ry  than it would 
i f  the crack were t o  close completely. Evidence t h a t  t h i s  i s  the  proper 
explanation i s  given i n  f igure  4 where it i s  seen that f a t igue  cracks i n  
specimens t e s t e d  a t  a high stress leve l  a r e  wider i n  2024-T3 than i n  
7075-T6 specimens. 
t i p  of the crack w a s  more apparent i n  t he  2024-T3 specimens than i n  the  
7075-T6 specimens. 

This may indeed be the case f o r  the 2024-T3 material a t  high 
leve ls .  A t  such leve ls ,  the material a t  the base of the notch 

I n  addi t ion,  local ized p l a s t i c  deformation a t  the  
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The r e s u l t s  of the  tests on 2024-T3 aluminum a l loy  a t  So = 20 k s i  
a t  the  two cycling speeds, 13 and 1,x)O cpm, ind ica te  a s l i g h t  speed 
e f f e c t  since the fatigue-crack propagation rates a t  1,X)O cpm are gen- 
e r a l l y  somewhat smaller than those a t  13 cpm ( f i g .  3 ) .  
check involved only two specimens, the r e s u l t s  are by no means conclusive - 
especial ly  i n  v- iew of r e su l t s  of speed-effect tests performed a t  
( ref .  1) wherein no consis tent  speed e f f e c t s  were found. 

.. 

Inasmuch as the 

R e 0 

Minimum Value of KNSnet Required t o  

Propagate a Fatigue Crack 

L 
3 
2 
8 

Crack propagation w a s  found t o  cease i n  the stepped-stress tests when 
the value of KNSnet 
and 20.5 k s i  f o r  7075-T6 aluminum a l loy .  
s t resses  which w i l l  r e s u l t  i n  crack propagation when the s t r e s ses  a re  con- 
tinuously reduced and are  very near ly  equal t o  the fa t igue  l i m i t  of an 
unnotched specimen (20 k s i  f o r  each material ,  ref .  3 ) .  
load t e s t s  which u t i l i zed  the 0.001-inch notch as  the i n i t i a l  stress 
raiser, it w a s  found t h a t  the cracks did propagate a t  
f o r  each material .  
the belief t h a t  the decreasing load method indicates  cor rec t ly  the  lowest 
s t r e s s  a t  which cracks w i l l  propagate. 

had been reduced t o  22, k s i  for 2024-T3 aluminum a l loy  
These appear t o  be the  minimum 

In  the constant-  

KNSnet = 26 k s i  
The f a c t  t h a t  crack's propagated i n  these tests supports 

Since the minimum values of KNSnet f o r  propagation a t  R = -1 are 
(approximately below the fat igue l i m i t  f o r  unnotched specimens a t  R e 0 

30 k s i )  and are  close t o  the  fa t igue  l i m i t  f o r  unnotched specimens a t  
R = -1, the compression p a r t  of the  cycle has been of influence i n  these 
low-stress t e s t s ;  it may be t h a t  a t  these low leve ls  complete closure i s  
not obtained. 

Semiempirical Curves 

A mathematical representation of the data  i n  f igure  3 would be use- 
f u l  f o r  calculating the number of cycles required t o  lengthen a crack a 
specified amount. A form of the semiempirical expression developed i n  
reference 1 w a s  applied t o  f i t  the present data  by using appropriate con- 
s t a n t s .  The general form of t h i s  equation i s  

loglo r = AIKNSnet + A2 + A3 Sf 
KNSnet - sf 
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where 
value of 
s ions f o r  the two aluminum al loys tes ted a t  R = -1 are  taken as follows: 

Sf i s  the fat igue l i m i t  of the pa r t i cu la r  mater ia l  f o r  a given 
R, as obtained from t e s t s  of unnotched specimens. The expres- 

For 2024-T3 

and f o r  7075-T6 

Equation (3) represents a curve essent ia l ly  iden t i ca l  with the s ing le  
curve which f i t t e d  a l l  the data  f o r  both materials a t  R = 0 
The equation fo r  the f i t t ed  curve from reference 1 i s  

( r e f .  1). 

Equations ( 2 ) ,  ( 3 ) ,  and (4) a re  plot ted i n  f igure 3. 

The smaller fa t igue  l i m i t  of 20 k s i  a t  R = -1 
s t a n t s  
t ions  (3) and (4) represent nearly ident ica l  curves. 
equations (2)  and (3) would require tedious numerical methods. 
quently, the simpler approximate method developed i n  reference 1 w i l l  be 
employed. 
Head (ref. 4)  : 

requires the  con- 
Al, A2, and A3 t o  t ake  on d i f fe ren t  values even though equa- 

Integrat ion of 
Conse- 

This method u t i l i z e s  a formula f o r  crack growth proposed by 

where x i s  one-half the crack length and a i s  a constant f o r  a given 
s t r e s s  l e v e l  and mater ia l .  Integration of t h i s  expression (eq. ( 3 ) )  
yie lds  
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where C i s  a constant of in tegra t ion  which may be evaluated from 
boundary conditions. 

Values of a were found f o r  a number of crack lengths f o r  each 
stress l eve l  by equating the expression f o r  the rate i n  equation ( 5 )  
with that  i n  e i t h e r  equation ( 2 )  o r  (3 ) .  
approximations of the ac tua l  rates of crack propagation as found by 
experiment. Since the grea tes t  number of cycles occur a t  the shor te r  
crack lengths, the values of a were weighted accordingly. Each value 
of was multiplied by the reciprocal  of the r a t e  of crack propaga- 

These equations a re  good 

a 
t i o n  and the  weighted average w a s  then determined. 
calculations a re  presented i n  tab le  11. These values f o r  a w e r e  used 3 
i n  equation (6) t o  pred ic t  the number of cycles required t o  extend the  
fat igue cracks from an i n i t i a l  length of 0.2 inch t o  various f i n a l  
lengths f o r  a l l  the t e s t s .  
l i n e s .  Although a varied considerably f o r  the f i n a l  20 percent of 
l i f e ,  the maximum r a t i o  of predicted t o  ac tua l  l i f e  i s  l e s s  than 2 : l .  
Therefore, the agreement between the number of cycles required t o  
extend the 0.2-inch crack t o  spec i f i c  lengths,  calculated with the use 
of the semiempirical expression, a r e  i n  acceptable agreement with the  
experimental results inasmuch as  even more s c a t t z r  i s  usually associated 
with fatigue tes t  r e s u l t s .  

The r e s u l t s  of these L 

2 
8 

The r e s u l t s  a re  given i n  f igure  2 as dashed 

CONCLUDING REMARKS 

A se r ies  of crack propagation tests have been run i n  sheet  specimens 

Minimum load = -1 and the results compared with previous t e s t s  made 

a t  R = 0. A s  was the  case f o r  R = 0, the theo re t i ca l  stress-concentration 
f ac to r  modified f o r  s i z e  e f f e c t  times the net-section s t r e s s  (KNSnet) w a s  
found t o  be a useful parameter f o r  cor re la t ing  the  r e s u l t s  of these t e s t s .  
The r a t e  of  fatigue-crack propagation i n  7075-T6 aluminum a l loy  w a s  the  
same a t  both R 0 and R = -1 over p rac t i ca l ly  the  e n t i r e  range of 
s t r e s ses  investigated.  
f o r  both R values only a t  values of KNSnet between approximately 50 and 
100 k s i ;  higher s t r e s ses  resu l ted  i n  higher rates a t  
R FZ 0. The close agreement found between R 0 and R = -1 t e s t s  has 
been explained on the basis of  crack closure during compression. Conse- 
quently, the  main f ac to r  influencing fatigue-crack propagation i n  general  
i s  the tension p a r t  of the cycle. 

of 2024-T3 and 7075-T6 aluminum a l loys  under completely reversed loading 

(R= Maximum load ) 

I n  2024-T3 aluminum al loy,  the rate w a s  the  same 

R = -1 than a t  
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The numbers of cycles required t o  extend a 0.2-inch crack t o  spe- 
c i f i c  lengths ,  calculated with the use of a semiempirical expression, 
were i n  acceptable agreement with experimental r e s u l t s .  

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Field,  Va . ,  J u l y  6, 1959. 

L 
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APPENDIX 

METHOD FOR CALCULATION OF KN 

A b r i e f  descr ipt ion w i l l  be given of the method f o r  determination 
of the stress-concentration f ac to r  corrected f o r  s i z e  e f f e c t  KN. 

In  the present  invest igat ion the s t r e s s  raiser i s  a cen t r a l  sym- 
L 
3 
2 
8 

metrical  crack and i s  considered t o  be an e l l i p s e  w i t h  major axis equal 

concentration fac tor  f o r  an e l l i p s e  involves f i r s t  determining the 
f ac to r  for a c i r cu la r  hole KH with diameter equal t o  the major axis 
of the e l l i p s e  from Howland's curve ( f i g .  5 ) .  
adjus t  t h i s  value t o  convert it i n t o  a f a c t o r  f o r  an e l l i p t i c a l  hole,  
as follows: 

t o  the t o t a l  length of the crack. The procedure f o r  f inding the s t r e s s -  

The second s t ep  is t o  

KE = 1 + (KH - 1) 

where KE i s  the s t ress-concentrat ion f a c t o r  f o r  the e l l i p s e ,  a i s  
the semimajor axis of the e l l i p s e ,  and p 
e l l i p s e .  

i s  the t i p  radius  of the 

The l a s t  s t ep  i s  t o  cor rec t  KE f o r  s i z e  e f f e c t  by using the Neuber 
formula : 

KE - 1 
K N = ~ +  

where p '  i s  a mater ia l  constant which i s  determined empirically.  

Subst i tut ing the value of KE from equation ( A l )  i n t o  equation (A2)  
r e s u l t s  i n  the following formula: 
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where pe i s  used instead of p t o  indicate  an e f f ec t ive  value of the 
t i p  radius f o r  a fa t igue  cra'ck. 

Previous work ( ref .  6) indicated that the material constant p '  
w a s  of the same order as the effect ive radius  of a crack 
s impl i f ica t ion  the two values were assumed t o  be equal, and equation (A3)  
be comes 

pe. A s  a 

.. 

.. 
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TABLE 11.- CALCULClTED VALUES OF THE CONSTANT a USED I N  INTEGRATION 

OF RATE EXPRESSION, EQUATION (5) 

6 k s i  
Crack 

length ,  
i n .  

10 k s i  20 k s i  3 k s i  

0.31 

-37 

.43 

.49 

.53 

.55 

.61 

.67 

.73 

.79 

.85 

.91 

-97 

1.10 

1.60 

2.10 

2.60 

3.10 

3.60 

4.10 

4.60 

5.00 
~ ~~ 

Weighted 
average . . 

Values of a f o r  s t ress  level, So, of - - 
o .0679 

.0996 

* 179 

.161 

.183 

----_- 

.200 

.215 

.228 

.232 

235 

* 253 

- 259 

.282 

* 315 

.311 

. y o  

.324 

.340 

.375 

.416 

.481 

0.150 

2024-T3 

1.56 

1.63 

1.63 

1.57 

1.70 

-___ 
1.66 

1.65 

1.64 

1.63 

1.62 

1.60 

1.63 

1-59  

1.57 

1.60 

1.72 

1.87 

2.12 

2.47 

---_ 
---_ 

1.63 

16.8 

16.7 

16.3 

16.5 

16.5 

---- 

16.6 

16.8 

16.9 

17.1 

17.3 

1-7.9 

18.5 

19.6 

23.8 

30.7 

42.2 

59.6 

89.0 

14.5 

_-__ 
---- 

17.3 87.1 

6 k s i  I 233 k s i  I 30 k s i  

7075-T6 

15.7 

15.3 

14.9 

14.7 

---- 
14.5 

14.3 

14.4 

14.6 

14.8 

15.2 

15.6 

16.0 

17.0 

20.7 

26.2 

35.2 

49.0 

75.2 

112 

----- 
--__- 

15.5 73.9 
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Figure 1.- Configuration of crack propagation specimens. 
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(b)  7075-T6 aluminum alloy. 

Figure 2.- Fatigue-crack propagation curves. Solid l i n e s  represent  
1 experimental r e s u l t s .  Dashed l i n e s  were computed from N = C - -. 
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Figure 3.-  Rates of fatigue-crack propagation f o r  two aluminum a l loys .  
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(a) 2024-T3 aluminum a l loy .  

c 

(b)  7075-T6 aluminum a l loy .  L-59- 3088 

Figure 4. -  Photomicrographs of surface of unloaded sheet  specimens. 
S = 30 ks i ;  x = 1.8 inches. ( ~ 2 5 )  
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Figure 5.- Elastic stress-concentration factor f o r  a circular hole in a 
finite sheet (ref. 5). 
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